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ABSTRACT

High range resolution radar systems have many advantages such as target
classification, resolution of multiple targets, accurate range measurement, target range
profile and detection of low radar cross section (RCS) targets in clutter. Pﬁgh range
resolution requires large bandwidths. Stepped frequency waveforms can achieve high
range resolution by increasing the effective bandwidth without increasing the
Instantaneous bandwidth which would increase the hardware requirements including
higher analog to digital (A/D) sampling rates which are limited by existing technology.
Under today's hardware limitations, the stepped frequency waveform becomes very
important. This thesis briefly discusses the stepped frequency radar and associated signal
processing, it investigates the ambiguity function of the stepped frequency waveform and
the stepped frequency radar system. Mathematical expressions of ambiguity functions are
derived and the improvement of clutter suppression capability for the stepped frequency

radar by rejecting initial pulses is also discussed.
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I. INTRODUCTION

High range resolution radar systems have many advantages such as target
classification, resolution of multiple targets, accurate range measurement, target range
profile and detection of low radar cross section (RCS) targets in clutter. High range
resolution is typically achieved either by decreasing the duration of the transmitted signal
or by modulating a transmitted signal of relatively longer duration. In either case, the
instantancous bandwidth of the signal goes up and thereby increases the hardware
requirements to include higher A/D sampling rates (which are limited by existing
technology). However, with the stepped frequency waveform, it is possible to achieve
higher range resolutions with lower instantaneous bandwidths and lower A/D sampling
rates. Irrespective of the waveform or compression method used, high range resolution
requires large bandwidths. For the stepped frequency waveform, a large bandwidth is
obtained sequentially by changing the carrier frequency in steps over several pulses instead
of within a single pulse. This waveform potentially can be implemented in high
performance radar systems with lower A/D sampling rates, which is one of the current
bottlenecks in the development of radar systems. Because of the importance of the
stepped frequency waveform, this thesis briefly discusses the stepped frequency radar, its
associated signal processing, and analyzes it by the ambiguity function. In Chapter II the

stepped frequency waveform and its corresponding radar system are introduced. In




Chapter I]Ilthe matched filter and the correlation definition of the ambiguity function are
first discussed. The properties and applications of the ambiguity function are also briefly
discussed. The mathematical expression of the auto-ambiguity function for the stepped
frequency waveform is then derived from the definition and is verified by comparing the
ambiguity diagram with one obtained by simulation. Finally, the mathematical expression
of the cross-ambiguity function for the stepped frequency radar signal processor is derived
and verified, and the improvement of the clutter suppression capability for the stepped
frequency radar by the rejection of initial pulses is discussed. In Appendix A, the
ambiguity functions for the single pulse, constant frequency pulse train, linear frequency
modulated (LFM) pulse, and the discrete frequency modulated pulse are given for the
purpose of comparison. Mathematical expressions of the ambiguity functions for these
‘waveforms are derived and verified. In Appendix B, the computer programs of ambiguity

functions for all the waveforms discussed in the thesis are listed.




II. OPERATING PRINCIPLES OF THE STEPPED FREQUENCY RADAR

A. STEPPED FREQUENCY WAVEFORM

The stepped frequency waveform can be described by a series of N coherent
pulses, where the carrier frequency increases from pulse to pulse by a fixed increment Af
as shown in Figure 1. Each pulse has a fixed pulse width T,, and the pulses are transmitted
at a fixed pulse repetition interval (PRI). The frequency of the kth pulse is given by

£ =f +(k-DAS, 1)
where f, is the nominal carrier frequency and Af is the frequency step size. [Ref. 1, pp.
160-161]

The instantaneous bandwidth of this waveform is approximately equal to the
inverse of the pulse width and is much less than the effective bandwidth. The waveform's
effective bandwidth, denoted as B, is determined by the product of the number of pulses
N, and the frequency step size Af as given below.

B =NAf 2
The range resolution for any waveform is dependent on the effective bandwidth of the

waveform. The range resolution of the stepped frequency waveform is given as

Ar=t 3)

where c is the speed of the light. Thus the range resolution can be made finer by increasing

the effective bandwidth NAf. [Ref. 2, p. 234]
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N : number of pulses  Tr : pulse repetition interval (PRI)
Ts : pulse width Af: frequency step size
f0 : nominal carrier frequency

Figure 1. The Stepped Frequency Waveform




The effective bandwidth is achieved by the signal processing of the data obtained
during the coherent processing interval (CPI), which usually is the time on target. The CPI

is given by the product of the number of pulses N and the pulse repetition interval (PRI).
CPI=NxPRI 4

B. SYSTEM DESCRIPTION

The block diagram of a radar which employs a stepped frequency waveform is
shown in Figure 2. The transmitted signal in this radar is generated as in conventional
coherent radars by mixing RF frequency (STALO) and IF frequency (COHO). However,
the frequency step in each pulse is added by the frequency synthesizer as shown in Figure
2. On the receiver side, a reverse operation of taking out the RF, step, and IF frequencies
is performed. The IF amplifier serves as a matched filter to the envelope of each individual
pulse. The output of the synchronous detector is a video signal in the form of in-phase and
quadrature (I-Q) components. The output of the A/D is stored and organized according to
range bins. Received signals from all N pulses in each range bin is collected. This data may

be weighted before taking the DFT. The output of the DFT represents a finely resolved
range bin. The size of the original range bin is ct/2. However, after DFT, the width of the
subdivision of a finely resolved range bin is ct/2NAft, which is equivalent to having a
bandwidth of NAf [Ref.2, p. 236]. The unambiguous range R for this waveform is ¢/2Af.
This will be quite short but it may not be a problem as it is applicable within the same

range bin. For avoiding wrap around the target, R, should be greater than the target

extent.
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Figure 2.  System block diagram for the Stepped Frequency Radar



ITI. ANALYSIS OF THE STEPPED FREQUENCY RADAR
BY THE AMBIGUITY FUNCTION

A. INTRODUCTION TO AMBIGUITY FUNCTION
1. Matched Filter

The matched filter maximizes the output peak signal to noise power ratio for
the detection of a known signal. In the presence of additive white Gaussian noise, the
impulse response of the matched filter is the complex conjugate of the image of the
received waveform, h(t)=s"(t,-t), where s(t) is the received signal, that is, it is the same as
the received signal run backward in time starting from fixed time t,. [Ref. 3, p. 261] In
order to simplify the mathematical developement, it is customary to set t, at zero. The

output of the matched filter is then written as

N { SOVR(t—N)d\ =j; SOVs* (b — DA )

2. Definition of the Ambiguity Function
If the transmitted signal S(t) is u(r)e/*¥’, then received signal S-(f) is given
by u(t —Tp)e2™/e¥a)To) where Tp is the unknown round trip time delay given by 2&

and f4 is the Doppler shift of the returned signal. Assuming that the radar receiver is

matched to the transmitted signal, we obtain the output of the matched filter as

oo /
so(:r;) = [ w(t = Tp)e P 0oal-To)  y* (z T, )e‘m(‘%)dt : (6)

—c0

/
where T, is the estimate of time delay.




/ /
It is customary to set T and fo equal to zero, and to define Tp — T as T. The
output of the matched filter is then

So(t) = e [ u(t—Tur (e ds. Q)

Since the interest is only in the magnitude of the matched filter output,
neglecting the first exponential term, we obtain the output of the matched filter as

oo

X(t.fs) =] ut—tu*(e*™dt (8)

—o0

In this form a positive T indicates a target beyond the reference delay t, ,
and a positive f, indicates an incoming target [Ref. 4]. In the literature the term
"Ambiguity Function" is interchangeably used for X(T,f,), IX(t,f)l, and IX(T,f)I*. In this
thesis, the plot of IX(t,f,)f* is called the ambiguity diagram. If the receiver filter is matched
to the transmitted signal, IX(’c,fd)l2 is termed the auto-ambiguity function, otherwise, it is

termed the cross-ambiguity function.

3. Properties of the Ambiguity Function
The function |X(t,f4)|? has the following properties [Ref. 5, p. 412]:

Maximum value of 1X(t,72)|2 = [X(0,0)|2 = (2E)?, (9)
IX(—t, f2)I2 = IX(z, fa)l2, (10)
Ix(z,0)l2 = | 1 u(t —Dut (Hdrl?, (1)
X.f2? = | w@ersad?, (12)




11 xufa)ldvapa=28)*. (13)

The first equation given above, Equation 9, states that the maximum value of

the ambiguity function occurs at the origin and its value is (2E)*, where E is the energy
contained in the echo signal. Equation 10 shows that the ambiguity function is symmetric
about the origin. Equation 11 describes that the ambiguity function along the time delay

axis is the auto-correlation function of the complex envelope of the transmitted signal.

Equation 12 shows that along the frequency shift axis the ambiguity function is
proportional to the spectrum of u’(t). Equation 13 states that the total volume under

the ambiguity function is a constant equal to (2E)*.

The ideal ambiguity diagram consists of a single peak of infinitesimal thickness
at the origin and is zero everywhere else, as shown in Figure 3. The single spike eliminates
any ambiguities, and its infinitesimal thickness at the origin permits the frequency and the
echo delay time to be determined simultaneously to as high a degree of accuracy as
desired. It also permits the resolution of two targets no matter how close together they are
on the ambiguity diagram. Because of two restrictions the ideal ambiguity function is not

possible; first, the maximum height of the ambiguity function must be equal to (2E)%,
which is linﬁted, and second, the total area under the ambiguity function must be finite
and equal to (2E)>. A reasonable approximation to the ideal ambiguity function might
appear as shown in Figure 4. This waveform does not result in ambiguity since there is

only one peak, but the single peak might be too broad to satisfy the requirements of

accuracy and resolution. If the peak is made too narrow, the requirement for a constant




fd

Figure 3. Ideal ambiguity diagram "after Ref. [5]."

fd

Figure 4. The approximation to the ideal ambiguity diagram "after Ref. [5]."
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volume might cause peaks to form at regions of the ambiguity diagram other than the
origin and give rise to ambiguities. Thus the requirements for accuracy and ambiguity may
not always be simultaneously possible to satisfy. [Ref. 5, pp. 412-413]

The particular waveform transmitted by a radar is chosen to satisfy the
requirements for (1) detection, (2) measurement accuracy, (3) resolution, (4) ambiguity,
and (5) clutter rejection. The ambiguity diagram may be used to assess qualitatively how
well a waveform can achieve these requirements. The maximum value of the ambiguity
function is an indication of the radar's detection capabilities. Since the ambiguity diagram
is often normalized so that the maximum value is equal to one, the ambiguity diagram is
seldom used to assess the detection capabilities of the waveform. The accuracy with which
the range and the velocity can be measured by a particular waveform depends on the
width of the spike, centered at IX(0,0), along the time and frequency axes. The
resolution is also related to the width of the central spike, but in order to resolve two
closely located targets the central spike must be isolated. It cannot have any high peaks
nearby that might mask another target close to the desired target. A waveform that yields
good resolution will also yield good accuracy, but the reverse is not always true. The
presence of additional spikes can lead to ambiguity in the measurement of target
parameters. An ambiguity measurement is one in which there is more than one choice
available for the correct value of a parameter, but only one choice is appropriate. Thus the
correct value 1s uncertain. The ambiguity diagram may be used to determine the ability of a

waveform to reject clutter. If the transmitted waveform is to have good clutter-rejection

11




properties, the ambiguity diagram should have little or no response in the regions of clutter
[Ref. 5, pp. 418-420]. Some examples of the ambiguity function are shown in Appendix A
which includes single pulse, pulse train, linear frequency modulation pulse, and stepped

frequency modulation pulse.

B. DERIVATION OF THE AUTO-AMBIGUITY FUNCTION FOR THE

STEPPED FREQUENCY RADAR

In order to derive the auto-ambiguity function, according to the definition,
Equation 8, we need the expression of the complex envelope of the transmitted signal. The
transmitted signal of the stepped frequency radar consisting of a train of N pulses and

changing carrier frequency from pulse to pulse by fixed increment Af is shown in Figure

1. It is mathematically represented as

N-1
S =a, ,Eo u(t — nT,)el*™fotntht (14)
where u(t—nT,) =1, if nT,<t<nT,+Ts,
0, elsewhere, (15)
fsiep = ASf n=0,...,N—1 ,and

f 0 =f coho +f stalo 5

feono : the frequency of the stable coherent oscillator ,
fswio : the frequency of the stable local oscillator ,
fsep : step frequency,

Af  :the frequency step size,

N : the number of the pulse sequences,

T, :pulse repetition interval (PRI),

Ts :pulse width,

a; :the amplitude of the transmitted signal.
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The transmitted signal can be rewritten as

S = az[l’g u(t — nT,)el™4 ]eﬂ’%’

= a,U(t)e/*™o (16)
N=1
where U() = §o u(t—nT,)e’™ ¥ is the complex envelope of the pulse sequence. The
signal received due to a discrete scatterer can be written as
Sr®=aUt- 1)612E00+fd)(t4) 17)
where

a, : the amplitude constant,
T : the round trip time between the radar and the scatterer,
fa : the Doppler frequency shift due to the normal relative velocity between the

radar and the scatterer,
=2 (18)
and

fa="fo. (19)
Substituting the complex envelope, U(t) , of the transmitted signal into

Equation 8, we obtain the auto-ambiguity function of the stepped frequency radar as

% N1 N-1
X(tfa) =] ”f-\;o u(t —mT, — 1)e2 -0y EO u*(t—nT,)e2mtft x o2 gy (20)

Changing variable t-nT, by £ , we change the above equation to

N=IN-1 s
X(t.fa)= Z=30 Eo e NTr o pR2TmnifTr o o=2MmAfT 5 oj2rfanT
m

/
x| u* (t’ )u(r’ ~(m—n)- r)eﬂ“(m-"Mﬂ'eﬂW'dt . @1

—c0
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Defining the round trip time T in terms of integer and fraction parts

T=(p+Y)Tr’

(22)

where p is an integer, ¥ is the fraction, and 0 <Y< 1, we obtain the ambiguity function as

= - T Tr) vy pi2nphfe <, SO AT TY)
X(t.fa) =Ts—T,) Xe X e Xt —— Yy

min (N—1 N~14p)
X hol /2P MTr v o=2Mntfe ,

n=max (0,p)
T,
for 0<y<3,

= (T + (Y= 1)T,) X @M DM Tert-T,) 5 R e VNI DT)

W+ TH-1T7)

min (N-1,N+p)

Xejzn(P*'l)mx Z ej'ZTUI(fd-(P'H.)Af)Tr X e_jzmm R
n=max (0,p+1)
Ts
for 1-7-<v<1,and
=0, elsewhere.

(23-1)

(23-2)

(23-3)

After simplifying the summation term and taking the absolute value, we obtain the

expression for the auto-ambiguity function as

—(T. - sntfrpATAT) | | | Sl AN-Ip)T,
IX(Tyf d)l "(Ts YT’)XI T —pANT =T ) |><| sin T —2p+NANT, I’

Ts
for 0<y< T

14

(24-1)




_ sinf—(E+DMTH-DT0) | _ | Snnf e+ DAYN-lp+1)T,
X(ufol = @+ - DT < g iy X 1™ s Gpeertir,

for 1-3<y<1, (24-2)
=0, elsewhere. (24-3)

The auto-ambiguity function along the Doppler frequency shift axis can be

expressed as

_ sintf ;T sin T ,NT,
x(0.f)l = Ts x IS5 I < 1525 (25)

The auto-ambiguity function along the time delay axis can be expressed as

B sinT(-pAATsTy) sinn(~(2p+1)ANN=1p))T-
IX (T, O)I = (Ts "YT") X | (~pAH(TsTr) ' X I sinn(-2p+Y)ANT - | ’

for0<y< g, (26-1)

| sin(—{(p+1) AN (TsH-1)T+) | x| sin(~Qp++ ) ANN-Ip+11)T |

=(Ts +(y=DT,) X (~p+D)ANTsH=1)T,) sinT(~(2p+y+1)ANT - ’
for 1 - <y<1,and (26-2)
=0, elsewhere . (26-3)

One can easily show that the auto-ambiguity function of the stepped frequency

radar will become the ambiguity function of the pulse radar (shown in Appendix A) by
setting Af to zero. The ambiguity diagram, that is the plot of IX(t.f)I* for the stepped

frequency waveform for the following parameters: number of pulses N equals to 4,
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duty-cycle equals 0.2, and frequency step size Af equals 2PRF is plotted in Figure 5. This
plot somewhat looks like the ambiguity function of the pulse train rotated at an angle. The
contour plot of the ambiguity function is shown in Figure 6. Plots of a cut along the
frequency axis for t=0 and a cut along the time delay axis for f,=0 are shown in Figures 7
and 8. It can be seen from Figure 7 that the spikes appear at multiples of PRF in the
frequency axis. The first null for each spike is 1/(NT,) away from the center of the
spike. Therefore, each spike has null to null width of 2/(NT) along the frequency axis.
Amplitudes of those spikes vary as a SINC function. Zero amplitude will appear at 1/T..
From Figure 8, there is 2N-1 spikes along the time delay axis. From Eq. 26-1, it is easy
to show that the first null for the central spike (p=0) occurrs at 1/(NAf). Accordingly, if
1/(NAf) is less than pulse width T, , the stepped frequency radar will have better range
resolution than the pulse radar. Plots of cut along the delay axis with different frequency
step Af's are presented in Figure 9. The larger the radar's frequency step, the better the

resolution of the radar.
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Figure 5. Auto-ambiguity Diagram of the Stepped Frequency Radar,
Pulse Number N=4, Duty-cycle=0.2, Af =2PRF.
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Figure 6. Contour Plot of the Auto-ambiguity Diagram for the Stepped
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Figure 7.

Plot of Cut along the Frequency Axis for T =0 of the Auto-ambiguity Function
for the Stepped Frequency Radar, Pulse Number N=4, Duty-cycle=0.2 , Af=
2PRF.
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Figure 8.

Plot of Cut along the Time Axis for f=0 of the Auto-ambiguity Function for the
Stepped Frequency Radar, Pulse Number N=4, Duty-cycle=0.2, Af =2PRF.

19




AN

1 0.2 0.

-0.3 -0.2 -0.1

delay (pri)

Figure 9. Plot of Cut along Time Axis for =0 of the Auto-ambiguity Function for
the Stepped Frequency Radar, Pulse Number N=4, Duty-cycle=0.2,
Af=[0,2,4,8] PRF.
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C. DERIVATION OF THE CROSS-AMBIGUITY FUNCTION FOR THE
STEPPED FREQUENCY RADAR

In this section the mathematical expression of the ambiguity function for the stepped
frequency radar receiver and processor as shown in Figure 2 are derived. Since the filter
used in this system is only matched to the individual pulse instead of matched to the
transmitted signal which is composed of N pulses, the ambiguity function of this stepped
frequency radar processor is called the cross-ambiguity function. The stepped frequency
radar can be mathematically modeled as shown ih Figure 10. The transmitted and received
signals were defined in Equation 16 and Equation 17 respectively. The received signal is
mixed with a local oscillator, stepped frequency synthesizer, and a coherent oscillator. The
stepped frequency synthesizer is synchronized so that the transmitter and receiver are on
the same frequency step. As a result, multiple time around echoes will have frequencies
which vary by multiples of frequency step size Af. The signal is then passed through a filter
which is matched to a single pulse envelope. The output of the pulse-envelope matched
filter is sampled and the samples undergo the discrete-time signal processing shown in
Figure 10.

The output of the stepped frequency synthesizer used in the receiver is defined as
N=1
Ssiep () = Z Wt =T, )eF2mn%, 27)

where

wie—-nT,)=1, if nT,<t<(n+1T,,and
0, elsewhere. (28)
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Figure 10. The Mathematical Model of the Stepped Frequency Radar
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The output of the matched filter, z(t), can be derived by taking the convolution of
the impulse response of the matched filter, h(t), and the received signal at the input of the

matched filter. The received signal at the input of the matched filter can be defined as
Si(t) = €720 X S51ep (8) X S, (1) . (29)
The output of the matched filter can then be expressed as
2to) =] Si(m)x k" (to —M)dn
:T e (Nil u(rl - mTr)e"ﬂ"U”Aﬁ'l)
. m=0
x(a, g u(n -t — nT,)e*fotfantn-1) ) X h*(to —m)dn . (30)

The above equation can be rewritten as

2to) =a, | €T X T x I h*(to —M)dn , 31)
where
J :Nil u(n —mT )e—j2TUnAfT| XNil u(’]"l —1—nT )eJZ‘rmAﬂT]—T) (32)
m=0 ’ n=0 r ’

and 7 is defined in Equation 22.

23




If each pulse of the received signal is assumed to fall within the same pulse of

the stepped frequency signal no matter how T varies, then J can be expressed as

o min (N—1-p,N-1) 2
J = g72maf b3 u(n —t—nT,)e >4 (33)
n=max (0,~p)
where x=p, if pT,<t<(p+1DT,-Ts,
=p+1, if (p+DT,-Ts<t<@+1DT,. (34)

Substituting Equation 33 into Equation 31, we obtain the output of the matched

filter as

Z(t()) — are_jzn(fo'*'fd)'cx j e]zn(fd_KMnX

mmin (N—1—p,N—1)
u(n =T — nT,)e 5% x b* (1o —1)dn . (35)

r=max (0,~p)
Letting £ =m—10, we rewrite the output of the matched filter as

Z(to) = are—jzn(fO'f'fd)‘E < ejzn(fd_KAf)to

o min (N-1-p,N-1)
x | e]zn(fd_KAf)E.»[ Z(o ) u€+to—-1t- nTr):I X h*(-E)dE
oo n=max (0,~p
= q,e DT x el2Wmtox [ @2MnE X V(E — (T —19),T) X h* (<E)dE,, (36)
where fn =f1-¥Af, (37)
min (N=1-p N—1)
Vet = % ult—nT,)emde (38)

n=max(0,—p)
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It is customary to set t, to O for the computation of the ambiguity function and
neglect the first exponential term, since we are only interested in the magnitude of the
matched filter outputs. Redefining the output of the matched filter z(t) as X(t,f ), we

obtain the output of the matched filter as

X(T,fn) = | €t X V(t~1,7) X h*(~f)dt. (39)

According to the definition of the ambiguity function in Equation 8, we tre}at f.as
the frequency shift of signal at the input of the matched filter. This frequency shift consists
of the Doppler shift and the frequency changes due to the stepped frequency waveform.
V(t,7) is then the envelope of signal at the input of the matched filter. Thus X(tf,)
becomes the cross-ambiguity funcﬁon of the stepped frequency radar without the
processor. In this form a positive T indicates a target beyond the reference delay t,.

In the rest of the section, the ambiguity function is extended to include the signal
processor. The matched filter output is sampled at instants t=n7, and the samples
undergo discrete-time signal processing. The sample rate, 1/T, is greater than or
equal to the bandwidth of the pulse envelope u(t). Further, the pulse repetition interval
(PRI), T,,is aninteger multiple, k, of T. The sample stream for all the pulses is sorted
into k parallel processing streams termed ambiguous range bins. Processing within each
range bin utilizes only samples from time instants separated by integer multiples of T .

[Ref. 6]
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The ith sample for range bin k can be defined as
2 (D) = z(kT s +iT,). (40)

These samples from the matched filter output which are associated with a range
bin are processed together by a discrete Fourier transformation (DFT) processor. A
Hamming window is applied before executing the DFT to reduce frequency sidelobes.
Out of N samples in a range bin, the first I samples are rejected to allow for the settling of
transients due to range ambiguous clutter [Ref. 7]. DFT is taken as the last M weighted

samples of each range bin as given below

M-1 w =Dt .
Z(k, ) = 2 wl)e ™ iz (i +1D), (41)
where
k : range bin index,
! : Doppler filter index,
M : the number of samples that DFT processed, and M <N —Ipl ,
i : sample index, i=0,1,....M-1,
w : the window coefficients,
I : the number of samples that will be rejected initially.
Substituting Equations 35 and 40 into Equation 41, we obtain the /th output of the
DFT for range bin k as
2k, 1) = a,e P
> min (N—1—p N-1)
| emmm z u(m —T—nT,)e *™ 4 x b (kTs —n)dn, (42)
—oo n=max (0,~p)
where
M=1 .
B0 =2 e 8k (t+G+DT)). (43)
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K (t) is the impulse response of the radar receiver processor which includes the
pulse envelope matched filter, weighting function and Doppler processor .

Equation 42 has the same form that Equation 35 does. So after changing variables,
setting kT, equal to zero and neglecting the first exponential term, the /th output of DFT

can be written as
X(T,fn) =] 2V(t—1,T)h] (—2)dt, (44)

The above equation defines the cross-ambiguity function associated with the
mathematical model of the stepped frequency radar processor as illustrated in Figure 10.
The subscript / indicates that a distinct ambiguity function is defined for each Doppler
filter.

For the received pulse to be matched to the transmitted pulse, h(t) should be equal
to p(-t). From Equations 37, 42, and 43, after simplifying, the ambiguity function for /th

DFT can be expressed as

in (N—1-/+p N-1-{ M-1 . . .
X !(’[, f d) :mlM % ) W(l) X e_jzmﬁ X @ PU+-p)AfT o e/t EDT,

i=max (0,p—)

- AT 7)o SR KT Tr)
X(Ts—I,)Xe xSt

for0<y<Z, (45-1)
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in (N~{+p N~I M~1 .
Xufa) o B ) T ¢ g pDAfe o PR,

=max (0,p+1-])

_ AT+ y-1)T7) o SO KN TsH-1)T7)
XTs+ (=D xe X BT -DT)

for 1-F<y<1, (45-2)

=0, elsewhere. (45-3)

Taking the absolute value of the above equation, we obtain the ambiguity function

as

_ _ sin W —p A Ts—~T )
Xt f)l = (Ts—I) x| W) Ts—Tr) Ix

' in (N=1—~I+p N—1-I M~1) . .
| min iﬁ w(i) Xe—ﬂmﬁl X ej21c(fd—(2p-!-'y)Af)lTrl’
=max (0,p—)

forOSy<%, (46-1)

— - Sinn(fd—(P'*'l)Af)(Ts‘*'(Y_l)Tr)
= (et (= D) > B S Sy ™

min (N—+p, N~ M~1)

I

WD) X e 720t x @2 QrrMIT, |
#=max (0,p+1-)

for | -F<y<1, (46-2)

=0, elsewhere. (46-3)

The above equation becomes the cross-ambiguity function of the stepped

frequency radar processor. The cross-ambiguity function can describe the auto-ambiguity
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function of the stepped frequency radar by setting the Doppler filter index [ to zero and
assuming a uniform window, w(i)=1, setting I to zero, and setting the number of
transmitted pulses, N, equal to the number of samples processed, M. Under these
assumptions and after simplifying, the ambiguity function becomes

T Sl PMTT) | | SO ComAN-IohT,
o(w.fo)l = (T~ < g ey < = e,

for0<y<g, (47-1)

i T , i 2p+HDANN-lp+DT,
=(Ts+(y- I)Tr)x|smn(fr(p+l)Af)( HEVT) | o (S 2 DN p L |

MDA THy-DT,) snmlf-Cprr )T,
for 1 -F <y<1, (47-2)
=0, elsewhere. 47-3)

The above equation is exactly the same as the expression of the auto-ambiguity
function in Equation 24. If we let the frequency step, Af, be zero, it is easy to prove that
Equation 38 becomes the ambiguity function of a pulse train as expressed in Appendix A
Equation. A.13.

The ambiguity diagram of the Oth, /=0, Doppler filter of the stepped frequency
radar with a Hamming window in the Doppler processor is illustrated in Figure 11. Figures
12 and 13 are plots of cut along the frequency axis and delay axis respectively. From the

comparison of Figures 12 and 13 with Figures 7 and § which are the cut plots of the
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Figure 11. Cross-ambiguity Diagram of the Stepped Frequency Radar, Pulse Number
N=4, Number of Pulses Processed M=4, Duty-cycle=0.2, Af =2PRF, 1=0, /=0,
and with Hamming Window
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Figure 12. Plot of Cut along Frequency Axis for T = 0 of the Cross-ambiguity Function

for the Stepped Frequency Radar , Pulse Number N=4, Number of Pulses
Processed M=4, Duty cycle=0.2, Af=2PRF, I=0, /=0, and with Hamming
Window
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Figure 13. Plot of Cut along Time Axis for =0 of the Cross-ambiguity Function for the
Stepped Frequency Radar, Pulse Number N=4, Number of Pulses Processed
M=4, Duty-cycle=0.2 ,Af =2PRF , I=0, and /=0, and with Hamming Window
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auto-ambiguity diagram for the stepped frequency radar without window function,
one can find that window functions which are often used in radar processors will decrease
the amplitude of each spike and spread the width of it in return for reducing the sidelobes
of each spike. The decrease in amplitude will reduce the detection capability and the
spread of the width of the spike will cause poor accuracy and resolution. On the other
hand, reducing the sidelobe of the spike will enhance the detection of small targets close to
the large target. Figure 14 shows the bank of Doppler filters within a DFT processor .
This figure indicates that the ambiguity function for the /th Doppler filter is the shifted
version, along the frequency axis, of the ambiguity function for the Oth Doppler filter. The
effect of decay for different Doppler filters is caused by the window function.

The improvement in clutter suppression capability that is achieved using pulse
Doppler processing, including the use of rejecting I pulses for initialization, is
demonstrated in Figures 15 thru 28 [Ref. 7]. The figures were drawn using the MATLAB
computer program which calculates the ambiguity function defined by Equation 47.
Figures 15 thru 22 show the clutter suppression capability for the pulse radar, and Figures
23 thru 28 show the clutter suppression capability for the stepped frequency radar. In all
these plots, the sample step of time delay axis is 4 PRI. Therefore only envelopes of the
ambiguity diagram are shown in the time delay axis. In the frequency shift axis, there are
many spikes occurring at the position of multiples of PRF, but only a single spike is shown
in the plots. The Hamming window is used in all of these plots. In Figures 15, 17, 19, 21,

23, 25, and 28, the number of transmitted pulses and processed pulses are equal,
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Figure 14. Plot of Cut along Frequency Axis for 1=0 of the Cross-ambiguity Function
for the Stepped Frequency Radar, Pulse Number N=4, Number of Pulses
Processed M=4, Duty cycle=0.2 , Af.=2PRF, I=0, 1=[0,1,2,3], and with
Hamming Window
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N=M=100, and the number of initial pulses rejected, L, is set to zero. In Figures 16, 18,
20, 22, 24, 26, and 28, the number of transmitted pulses, N, is increased to 150, and I is
set to 50. From Figures 15 thru 18, in the case of the pulse radar, the use of initial pulse
rejection leads to an ambiguity function which, along the delay axis, is a cross correlation
of envelope functions of unequal length. This phenomenon is not clear for the stepped
frequency radar due to the different pulse frequencies as shown in Figures 23 and 24.
Comparing Figures 19, 21, 25, and 27 with Figures 20, 22, 26, and 28, respectively, the
improvement in clutter suppression capability when utilizing initial pulse rejection is clearly
demonstrated. Comparison of Figures 19 and 25 with Figures 20 and 26 shows that the
clatter in the 0 to 50 PRI range will be rejected by the use of an initial pulse rejection for a
0.1 PRF Doppler mismatch. Figures 21 and 27 show that, without initial pulse rejection,
the capability of Doppler processing to suppress clutter is severely degraded when placing
30 PRIs of delay (from the matched delay) when compared to the cases shown in Figures

22 and 28. [Ref. 6]
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Figure 15. Cross-ambiguity Diagram of the Pulse Radar, Pulse Number N=100,
Number of Pulses Processed M=100, Duty-cycle=0.2, Af =0, 1=0, /=0,
and with Hamming Window
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Figure 16. Cross-ambiguity Diagram of the Pulse Radar, Pulse Number N=150,
and with Hamming Window.

Number of Pulses Processed M=100, Duty-cycle=0.2, Af =0, 1=50, [=0,
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Figure 17. Plot of Cut along Time Axis for =0 of the Cross-ambiguity Function for the
Pulse Radar, Pulse Number N=100, Number of Puises Processed M=100,
Duty cycle=0.2, Af=0, I=0, /=0, and with Hamming Window.
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Figure 18. Plot of Cut along Time Axis for f=0 of the Cross-ambiguity Function for the
Pulse Radar, Pulse Number N=150, Number of Pulses Processed M=100,
Duty-cycle=0.2, Af =0, I=50, /=0, and with Hamming Window
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Figure 19. Plot of Cut Parallel to Time Axis for f=0.02PRF of the Cross-ambiguity
Function for the Pulse Radar, Pulse Number N=100, Number of Pulses
Processed M=100, Duty-cycle=0.2, Af =0, I=0, /=0, and with Hamming
Window
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Figure 20. Plot of Cut Parallel to Time Axis for f=0.02PRF of the Cross-ambiguity
Function for the Pulse Radar, Pulse Number N=150, Number of Pulses
Processed M=100, Duty-cycle=0.2, Af =0, I=50, /=0, and with Hamming
Window.
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Figure 21. Plot of Cut Parallel to Frequency Axis for T =30PRI of the Cross-ambiguity
Function for thePulse Radar, Pulse Number N=100, Number of Pulses
Processed M=100, Duty-cycle=0.2, Af = 0, I=0, /=0, and with Hamming
Window
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Figure 22. Plot of Cut Parallel to Frequency Axis for T =30PRI of the Cross-ambiguity
Function for the PulseRadar, Pulse Number N=150, Number of Pulses
Processed M=100, Duty-cycle=0.2, Af =0, I=50, /=0, and with Hamming
Window.
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Figure 23. Cross-ambiguity Diagram of the Stepped Frequency Radar, Pulse Number
N=100, Number of Pulses Processed M=100, Duty-cycle=0.2 , Af =0.1PRF,
I=0, /=0, and with Hamming Window
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Figure 24. Cross-ambiguity Diagram of the Stepped Frequency Radar, Pulse Number
N=150, Number of Pulses Processed M=100, Duty-cycle=0.2 , Af =0.1PRF,
1=50, /=0, and with Hamming Window
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Figure 25. Plot of Cut Parallel to Time Axis for £=0.02PRF of the Cross-ambiguity
Function for the Stepped Frequency Radar, Pulse Number N=100, Number of
Pulses Processed M=100, Duty-cycle=0.2 , Af =0.1PRF, I=0, /=0, and with
Hamming Window
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Figure 26. Plot of Cut Parallel to Time Axis for £=0.02PRF of the Cross-ambiguity
Function for the Stepped Frequency Radar, Pulse Number N=150, Number of
Pulses Processed M=100, Duty-cycle=0.2 JAf =0.1PRF, I=50, /=0, and with
Hamming Window.
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Figure 27. Plot of Cut Parallel to Frequency Axis for t=30PRI of the Cross-ambiguity
Function for the Stepped Frequency Radar, Pulse Number N=100, Number of
Pulses Processed M=100, Duty-cycle=0.2 , Af =0.1PRF, I=0, /=0, and with
Hamming Window.
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Figure 28. Plot of Cut Parallel to Frequency Axis for t=30PRI of the Cross-ambiguity
Function for the Stepped Frequency Radar, Pulse Number N=150, Number of
Pulses Processed M=100, Duty-cycle=0.2, Af =0.1PRF, I=50, /=0, and with
Hamming Window.
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IV. CONCLUSIONS

This thesis investigates the ambiguity functions of the stepped frequency waveform
and the stepped frequency radar system. The stepped frequency waveform achieves a high
range resolution by coherently processing the returns from N pulses, each having a
different carrier frequency that changes by a fixed amount from pulse to pulse. The
mathematical expression of the auto-ambiguity function for the stepped frequency
waveform is derived from the definition. The auto-ambiguity function is defined as the
correlation of the complex envelope of the transmitted signal and the Doppler frequency
shifted version of the complex conjugate of the transmitted signal. The 3D plot of the
auto-ambiguity function shown in Figure 5 is spiky like that of a constant frequency pulse
train ( shown in Figure A.5) and is tilted at an angle. Along the time delay axis, the
null-to-null width of each spike is 2/NAf as compared to 2/7 for the constant frequency

pulse train, thereby making it possible to decrease the width by increasing NAf without

increasing its instantaneous bandwidth. However, for the constant frequency pulse train,
high resolution can be achieved by decreasing the pulse width and, thereby, increasing the

instantaneous bandwidth. On the other hand, the null-to-null spike width of the stepped

frequency waveform along the frequency axis is equal to 2/(NXPRI) which is the same as

for the constant frequency pulse train. Thus frequency resolution is not improved by the

stepped frequency waveform.
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The mathematical expression of the cross-ambiguity function for the high PRF
stepped frequency radar system including its receiver and signal processor is also derived.
This mathematical expression is obtained from the output of the Doppler processor and a
distinct ambiguity function is defined for each Doppler processing filter. If weighting is
ignored, the cross-ambiguity function of the Oth Doppler filter reduces to the
auto-ambiguity function of the stepped frequency waveform derived from the traditional
definition. Ambiguity functions of other Doppler filters are shifted versions of the
auto-ambiguity function along the frequency axis. The mathematical expression has been
verified by comparing the ambiguity diagram obtained by simulation which performs the
correlation method.

The improvement of the clutter suppression capability for the stepped frequency
radar system by rejecting initial pulses is also proven. The strong clutter returns from close
range can be suppressed by rejecting some initial pulses, thereby reducing the interference
from the region. Four types of basic waveforms are also discussed in the appendix for the
purpose of comparison. These are single pulse, periodic constant frequency pulse train,
linear frequency modulated pulse, and discrete frequency modulated pulse. The
mathematical expressions of ambiguity functions for these waveforms are derived and

have been also verified by simulation.
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APPENDIX A. EXAMPLES OF THE AMBIGUITY FUNCTION FOR THE

BASIC WAVEFORMS

In this section the ambiguity functions of commonly used radar signals such as

single pulse, constant frequency pulse train, linear frequency modulated pulse, and discrete

frequency modulated pulse are discussed. The mathematical expression of the ambiguity

function for these waveforms are derived and verified by comparing with the ambiguity

diagram obtained from the simulation.
1. Single Pulse of the Sine Wave

The single pulse of the sine wave can be defined as
Sd2) = u(t)e™*

where u(t) is the complex envelope of the signal, it is defined as

u(®)=1, if 0<t< Ty,
=0, elsewhere, and
T is the pulse width.

The ambiguity function of the single pulse can be expressed as

o

X(t.fa) =] u(t—t)u*(f)e™dt

—o0

Ts
=I e]zTgfdtdt

T
— _ i a(Tst1) o S0 )
= (T, —1) x VeV X —=0=, for 0<1< T,
_ FE(Tetr) o STt _

X(t.fa) =0, elsewhere.
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The absolute value of the ambiguity function of the single pulse can be

expressed as

sin T4 (T s
X(tf)l = (T, -0 |22, for0<t<T,, (Ad-1)
X(tfo)l = (T +0) < 1222 for T, <1 <0, (A4-2)
IX(t,f2) =0, elsewhere. (A4-3)

The ambiguity function along the Doppler frequency shift axis, t=0,
becomes

IX(0,£)! =T, x Is"“—,ff’j‘;f—”l (A.5)

The ambiguity function along the time delay axis, f,=0, becomes

IX(t,0)l =T, -1 , for 0<t< Ty, (A.6-1)
=T:+7T, for -T;<1t<0, (A.6-2)
=0, elsewhere. (A.6-3)

The ambiguity diagram, IX(t.f,)%, of the single pulse is shown in Figure
A.1, the contour plot is shown in Figure A.2, and plots of cut along the frequency axis for
7=0 and time delay axis for f,=0 are shown in Figure A.3 and Figure A.4. The plot for
zero time delay is the square of the spectrum of a rectangular pulse which is the square of
the absolute value of the SINC function. The plot for zero frequency shift represents the

magnitude square of the auto-correlation function of a rectangular pulse.
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Figure A.1. Ambiguity Diagram of A Single Pulse, Pulse Width=1.
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Figure A.3. Plot of Cut along Frequency Axis for =0 of the Ambiguity Function for
A Single Pulse, Pulse Width=1.

1
0.8 _
0.8 -
0.7 ]
0.4a i
g 0.4% 4
g .4
4 -
o
S 0.3 .
0.2 4
0.1 .
0 . \ .
-1 -0.5 0 0.5
delay (pulse-width)

Figure A4. Plot of Cut along Time Axis for =0 of the Ambiguity Function for
A Single Pulse, Pulse Width=1.
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2. Constant Frequency Pulse Train

Constant frequency pulse train of N pulses can be defined as
N-1
St = §0 W(t — nT,)e*™o | (A7)

where {1(t) , the complex envelope of the single pulse of transmitted signal, is defined as

p'(t"’nTr)=1, if nTrSt<nTr+Ts ’
0, elsewhere , (A.8)

where

N : the number of pulses,
T, : pulse repetition interval (PRI),
fo : carrier frequency.

The ambiguity function of periodic pulse train can be derived as
X ) =] % WE—nT,—1) % W*(t—mT,)eWds (A.9)
sJd —_«n=0 l'lf r 0 u r .
After changing variable, we obtain the ambiguity function as
N=1N=1 o
X(t.fa) = n>=:0 m§0 T [ Wt — (m - n)T, — 1) dt (A.10)

Now we define the round trip time in terms of integer and fraction parts

T= @+, (A.11)

where p is integer ,Y is the fraction, and 0 <y< 1.
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After substituting Equation A.11 in Equation A.10 and simplifying , we

obtain the expression for the ambiguity function as

. in T (TsT)) min (N-1,N-14p) onFnT,
X(3,fa) = (Ts —yT,) X ealrtly) 5 SaTaleAn S5 pgnr,
( f ) ( s YT’ ) W a(Ts—Tr) n=max (0,p)

for 0<Sy<E, (A.12-1)

. : min (N—1,N+p)
= — T X e/ FadsHDTy) 5 S0TaTHDIY) j2nfunT,
(Ts+(y—-1)T;)Xxe X Tty X axz(‘,o 1)e ,

for 1-F<y<1, (A.12-2)

=0, elsewhere. (A.12-3)

We can now obtain the ambiguity function as the following equation after
simplifying the summation term and taking the absolute value.

— sin o (Ts—T7) sinffy(N-1phT,
IX(T’fd)l B (TS _’ﬂ"r) X | ﬂd(T:—’YTr) | X I Sin#dTr I ?

for 0<y<, (A13-1)

|X(T,fd)' = (Ts + (,Y_ I)Tr) % Ism#d(Ts"‘('Y‘l)Tr)I % lSin'”fd(N_lp"'l')T’I ,

#d(T:'*’(’Y_l )Tr) T sin Tvd T
for l—f <v<l1, (Al13-2)
IX(t,f2)l =0, elsewhere. (A13-3)
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The ambiguity function along the frequency axis, i.e., T=0, can be

expressed as

_ sin (15 T's) sin (TN, T7)
100, f)l =T, x| s lem( Wr)l. (A.14)

The ambiguity function along the time delay axis, i.e., f2 =0, is expressed

x(z,0)l = W= Iph(Ts —1T),
for0<y< g, (A.15-1)

=(N-lp+1h(y- DT, +Ty),
for |- <y<1, (A.15-2)

=0, elsewhere. (A.15-3)

The ambiguity diagram of the pulse radar according to Equation A.13 is shown in
Figure A.5 and the contour of the ambiguity diagram is shown in Figure A.6. Plots of cut
along frequency axis for 7=0 and cut along time delay axis for f;=0 are shown in Figure
A.7 and A.8. From Equation A.14 and Figure A.7, spikes appear at frequencies which are
multiples of PRF. The first null for each spike is 1/NT, away from the center of the spike.
Therefore, each spike has the null to null width of 2/NT in the frequency axis. Amplitudes
of those spikes varies as a SINC function. Zero amplitude will appear at 1/T,. From
Equation A.15 and Figure A.8, it is seen that there are 2N-1 spikes along the time delay
axis each of which has the width of 27 . The plot of cut of the ambiguity function at zero
frequency shift represents the magnitude square of the auto-correlation function of a pulse

train.
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Figure A.5. Ambiguity Diagram of the Pulse Radar, Number of Pulses N=4,
Duty-cycle=0.2.
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Figure A.6. Contour Plot of the Ambiguity Diagram for the Pulse Radar, Number of
Pulses N=4, Duty-cycle=0.2.
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Figure A.7. Plot of Cut along Frequency Axis for =0 of the Ambiguity Function for the
Pulse Radar, Number of Pulses N=4, Duty-cycle=0.2.
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Figure A.8. Plot of Cut along Time Axis for f=0 of the Ambiguity Function for the Pulse

Radar, Number of Pulses N=4, Duty-cycle=0.2.

57




3. Linear Frequency Modulated Pulse

Linear frequency modulated pulse can be mathematically represented as

S()=u (t)equ(fo&%wz)

= l:u(t)ef”*”2 ]eﬂ"ff" , (A.16)

where u(f) was defined in Equation A.2 and p is the rate of frequency change. The

ambiguity function of the linear frequency modulated pulse can be written as
X(t.fa) = | u(t— )™y (e ™ e2¥4

= [ ult —vyu* (e terry, (A.17)

Equation A.17 is exactly the same as Equation A.3, except that f, is

replaced by f-|1t. The ambiguity function becomes

in )(Ts—1)

1X(z,£)] =(Ts—’c)x|%|, for 0<t<Ts, (A.18-1)
sin (Ts+1)

= T+ x ISPl forT.<1<0, (A.18-2)

=0, . elsewhere. (A.18-3)
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The ambiguity diagram is shown in Figure A.9 and contour plot is shown
in Figure A.10. From Figure A.2 and Figure A.10, it can be seen that the ambiguity
function of the LFM pulse is a rotated version of the ambiguity function of a single pulse.
The angle of rotation depends upon the rate of frequency change | as shown in Figure
All.

4. Discrete Frequency modulated Pulse
The discrete frequency modulated pulse consists of N subpulses, each at

different discrete carrier frequency. Such a pulse can be expressed as
N-1
S = ,Eo u(t — nT)e?™otntht | (A.19)

where N is the number of the discrete frequencies in the pulse, NT is the pulse width, and

u(t) is defined as

u(t—nT) =1, fnT<t<(n+1)T,
=0, elsewhere. (A.20)

The envelope of the transmitted signal can be written as

U =ZZ;‘,(1) u(t — nT)e/*™4% (A21)
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Figure A.9. Ambiguity Diagram of the LFM Pulse, Pulse Width=1.
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. Contour Plot of the Ambiguity Diagram of the LFM Pulse, Pulse Width=1.
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Figure A.11.The Relation of the Ambiguity Functions for the Single Pulse and LFM Pulse.
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According to the definition of the ambiguity function, we obtain the

ambiguity function of the discrete frequency modulated pulse as
X(t,fa) =] UG—-1)U* (1)’ 4. (A.22)

Now we define the round trip time in terms of integer and fraction parts,

t=p+YT, (A.23)
where p is an integer and 7y is a fraction where 0 <y< 1. We can obtain the ambiguity

function of the discrete frequency modulated pulse after simplification. The expression of

the ambiguity function has the form as

X(T,fa) = {(1 —=Y)T x e™apM)UNT 5 pi2TpAfT 3 pilfa—@pNANN-14P)T ¢

sinTf~pAR(1-yT _ sin ”(fr(ZPW)M(N‘ll")T} +
W —p AT sin(fy—(2p+NANT

[T X /DM PRp+DATE o oinfapypDANN+PIT 5

sin 7 —~(p+DANT _ sinlf—~(2p+y+D)AHN-1p+1T ( A4
(fa—~(p+1)ANT sinT(f—~(2p+y+1)ANT } : 24)

The ambiguity diagram is shown in Figure A.12 and contour plot is shown
in Figure A.13. The discrete frequency modulated pulse is composed of the linear
frequency modulated signal and the pulse train with 100% duty-cycle. Therefore, the

ambiguity diagram of it has been tilted and has many discrete spikes.
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Figure A.12. Ambiguity Diagram of the Discrete FM Pulse, Pulse Width=1.
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Figure A.13. Contour Plot of the Ambiguity Diagram of the Discrete FM Pulse,
Pulse Width=1.
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APPENDIX B. AMBIGUITY FUNCTION PROGRAM CODES
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%filename : progl.m

% Ambiguity function of the single pulse by correlation method
%update : 27/sep/94

%by : Huang, Jen-chih

%

clear; %clear all the variable

tau=1; %pulse width =1

nx=50; %# of step in delay axis

ny=101; %# of step in frequency axis
t=[0:nx-1]*tau/nx; %time axis

dt=t(2)-t(1); %time step

z=[l;

fd=linspace(-4/tau,4/tau,ny) %frequency axis

ul=ones(1,nx); %envelope of the transmitted signal
for m=1:ny

u2=ul.*exp(j*2*pi*fd(m)*t); %ul multiply by doppler freq. shift
c=xcorr(u2,ul).*dt; Ycorrelation of ul & u2
z=[z;(abs(c))."2]; J%matrix of the ambiguity function
end

t=[fliplr(-t),t(2:nx)]; Y%ereconstruct the time axis
figure(1)

mesh(t,fd,z)

title('Ambiguity diagram of single pulse’)

xlabel('delay (pulse-width)’)

ylabel('fiequency (1/pulse-width)')

figure(2)

plot(t,z((ny+1)/2,:)) %plot of cut along frequency axis
xlabel('delay (pulse-width)")

ylabel(‘frequency (1/pulse-width)")

figure(3)

plot(fd,z(:,nx)) %plot of cut along delay axis
xlabel('delay (pulse-width)")

ylabel('frequency (1/pulse-width)")

2k ke ok 2k ok ok ke ke ok ok e 3k ok e o ok ok sk sk sk sk sk ke sk she ke ske sk sk sk sk sk sk sk ke sk sk ok sk sk ke sk sk sk sk s e sk ok e ok sfe o ske o s sfe ok sk sk skesie sk ke sk sk ok sk sk ke sk
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%filename : prog2.m

% Ambiguity function of the linear frequency modulation (LFM) pulse
%by correlation method

%update : 15/aug/94

%by : Huang, Jen-chih

%

%

clear; %clear all the variables

tau=1; %pulse width=1

mu=4; %rate of frequency change

nx=50; %# of step in delay axis

ny=101; %# of step in frequency axis
t=[0:nx-1]*tau/nx; Jotime axis

dt=t(2)-t(1); %time step

z=(];

fd=linspace(-4/tau,4/tau,ny); Yofrequency axis

for m=1:ny

ul=exp(j*pi*mu.*t.*t); %envelope of the transmitted signal
u2=conj(ul).*exp(G*2*pi*fd(m)*t); %ul multiply Doppler frequency shift
c=conv(u2,fliplr(ul)).*dt; %correlation of ul & u2
z=[z;(abs(c))."2]; %matrix of the mag. square of the ambiguity function
end

%

t=[fliplr(-t),t(2:nx)]; %reconstruct the time axis
figure(1)

mesh(t,fd,z) %mesh plot of ambiguity function

title(' Ambiguity function of the single pulse’)

xlabel('delay (pulse-width)")

ylabel('frequency (1/pulse-width)')

figure(2)

contour(t,fd,z,40) % contour plot of the ambiguity function
title('Contour plot of the signal pulse')

xlabel('delay (pulse-width)")

ylabel('frequency (1/pulse-width)’)

%
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%filename : prog3.m

% Ambiguity function of the stepped frequency radar by the correlation method

%update : 15/mar/94

%by : Huang, Jen-chih

%%

clear;

tau=0.2; %pulse width

t0=0.8; %PRI-pulse-width; PRI=1
df=0; %step frequency

% % if df=0 then pulse radar

% %else stepped frequency radar
fs=40; %sample rate (Hz)

N=4; ' %# of pulses

T=N*(tau+t0); %total time period for N pulses
sn=fs*tau; ' %# of samples in pulse width
tn=fs*t0; %# of samples between pulses
Tn=sn+tn; % of samples in one PRI
P=[ones(1,sn),zeros(1,tn)]; %envelope for one PRI
t=linspace(0,T,N*Tn); %time axis for N pulses
nx=101; %# of samples in frequency axis
fd=linspace(-10,10,nx); %frequency axis

dt=t(2)-t(1); otime step

s=[1;

m=[1,2,3,4]; %step frequency sequence
for n=1:N

s=[s,exp(j*2*pi*(m(n)-1)*df*t(Tn*(n-1)+1:Tn*n)).*P]; %transmitted signal
end

z=[];

for L=1:mx

f=fd(L);

sl=conj(s).*exp(G*2*pi*f*t); %transmitted signal multiply by doppler shift
s2=s; %the transmitted signal
c=conv(sl,fliplr(s2)).*dt; correlation of s1 & s2
z=[z;(abs(c)).2]; %matrix of the ambiguity function
end

[Lri=size(z);

t=[fliplr(-t),t(2:N*Tn)]; Jresconstruct time axis

figure(1)

mesh(t,fd,z) %mesh plot of the ambiguity function
xlabel('delay (PRI)")

ylabel(‘frequency (PRF))




figure(2)

plot(t,z((nx+1)/2,:)) %plot of cut along time axis
xlabel('delay (PRI)")

grid

figure(3)

plot(fd',z(:,(r+1)/2)) %plot of cut along frequency axis
xlabel(‘frequency (PRF)")

grid

%
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************************************************************************
%filename : progd.m

% Ambiguity function of the discrete frequency pulse

%update : 18/mar/94

%by : Huang, Jen-chih

%

%

clear %clear all the variables

tau=1; %pulse width

df=1; %frequency step

N=4; %# of discrete frequencies
sn=30; %sample rate in delay axis
ny=101; %# of sample in frequency axis
t=[0;N*sn-1]*tau/(N*sn); % time delay axis

dt=t(2)-t(1); %time step

s=[1;

m=[1,2,3,4]; %discrete frequency sequence
for n=1:N

s=[s,exp(j*2*pi*(m(n)-1)*df*t(sn*(n-1)+1:sn*n))]; %envelope of the transmitted signal
end

z=[];

fd=linspace(-4/tau,4/tau,ny); %frequency axis

for 1=1:ny

sl=conj(s).*exp(j*2*pi*fd(l)*t); %conjugate of s times Doppler shift

s2=s;

c=conv(s1,fliplr(s2)).*dt; %correlation of s1 & s2
z={z;(abs(c)).*2]; %matrix of the ambiguity function
end

t=[fliplr(-t),t(2:N*sn)]; %reconstruct the time delay axis
figure(1)

mesh(t,fd,z) %mesh plot of the ambiguity function

title("Ambiguity function of the discrete frequency pulse’)

xlabel(’ time (pulse width)")

ylabel(‘frequency (1/pulse-width)")

figure(2)

contour(t,fd,z,40) %contour plot of the ambiguity function
title('contour plot of the ambiguity function of the discrete frequency pulse’)
xlabel(' time (pulse width)')

ylabel('frequency (1/pulse-width)")

%
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%filename : progal.m
%ambiguity function of the single pulse by equation
%update : 20/aug/94
%by : Huang, Jen-chih
%
%
clear;
Ts=1;
nx=101;
tau=linspace(-Ts,Ts,nx);
ny=51;
fd=linspace(-4/Ts,4/Ts,ny);
z=[l;
for m=1:ny
f=fd(m);
x=[];
for n=1:nx
t=tau(n);
if >=0
if £*(Ts-t)==
x=[x,(Ts-1)};
else
x=[x,(Ts-t).*(sin(pi*f*(Ts-t)))./(pi*f*(Ts-t))];
end
else
if £%(Ts+t)==0
x=[x,(Ts+t)];
else
x=[x,(Ts+t).*(sin(pi*f*(Ts+t)))./(pi*f*(Ts+t))];
end
end
end
z=[z;x};
end
z=(abs(z))."2;
mesh(tau,fd,z)
xlabel('delay (pulse-width)')
ylabel(‘frequency (1/pulse-width)")

contour(tau,fd,z,40)
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%filename : proga2.m
% Ambiguity function of the linear frequency modulation pulse by equation
%
clear;
Ts=1;
mu=4;
nx=101;
tau=linspace(-Ts,Ts,nx);
ny=>51;
fd=linspace(-4/Ts,4/Ts,ny);
z=[];
for m=1:ny
x=[];
for n=1:nx
t=tau(n);
f=fd(m)-mu*t;
if =0
if £*(Ts-t)==
x=[x,(Ts-1)];
else
x=[x,(Ts-t).*(sin(pi*f*(Ts-t)))./(pi*f*(Ts-1))];
end
else
if £*(Ts+t)==0
x=[x,(Ts+t)];
else
x=[x,(Ts+t).*(sin(pi*f*(Ts+t)))./(p1*f*(Ts+t))];
end
end
end
z=[z;x];
end
z=(abs(z))./2;
mesh(tau,fd,z)
xlabel('delay (pulse-width)")
ylabel('frequency (1/pulse-width)’)
contour(tau,fd,z,40)
%
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%filename : proga3.m
% Ambiguity function of the pulse radar by equation
% update : 20/aug/94
%by : Huang,Jen-chih
Clear;
Ts=0.2;
Tr=1;
d=Ts/Tr;
N=4;
nx=161;
tau=linspace(-N*Tr,N*Tr,nx);
ny=61;
fd=linspace(-10,10,ny);
p=floor(tau/Tr);
r=(tau/Tr)-p;
z=[];
for m=1:ny
x=[];
f=fd(m);
for n=1:nx
t=tau(n);
pp=p(n);
r=r(n);
if >=0 & rr<d
if f==0
x=[x,(Ts-rr*Tr)*(N-abs(pp))];
else
x1=(sin(pi*f*(Ts-1r*Tr)))./(pi*f*(Ts-1r*Tr));
if rem(f*Tr,1)==0
x2=N-abs(pp);
else
x2=(sin(pi*f*(N-abs(pp))*Tr))./(sin(pi*{*Tr));
end
x=[x,(Ts-1r*Tr).*x1*x2];
end
else
if f==
x=[x,(Ts+(r-1)*Tr)*(N-abs(pp+1))];
else
x1=(sin(pi*f*(Ts+(r-1)*Tr)))./(pi*f*(Ts+(r-1)*Tr));
if rem(f*Tr,1)==0
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x2=N-abs(pp+1);
else
x2=(sin(pi*f*(N-abs(pp+1))*Tr))./(sin(pi*f*Tr));
end
x=[x,(Ts+(r-1)*Tr). *x1*x2];
end
else
x=[x,0};

end
end
z=[zXx];
end
z=(abs(z))."2;
figure(1)
mesh(tau,fd,z)
xlabel('delay (pulse-width)")
ylabel(‘frequency (1/pulse-width)’)
figure(2)
contour(tau,fd,z,40)
%

skeske sfesfe sk oke ok sk e ke ke sk ok sk st skeske e sfeshe o ok ok ok e ok ok sk sk sfe sk ke sk sk o sk sk sk sk skeskeskeskesfe sk ok sk sk sfe ke sk ek o sk e e ke seskeskeok ok kb e sk sk ke ok

75




ok e sk sk sk ok sk sk sk sk ook sk e sobe e sk ok sk sk ok ok ok ook ok ok sk e ko sk ok sk sk sk sk sk ok ok o sk ok sk sk ksl sk ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok

%filename : proga4.m
% Ambiguity function of the stepped frequency radar by equation
% update : 20/aug/94
%by : Huang, Jen-chih
clear;
Ts=0.2;
Tr=1;
df=2;
d=Ts/Tr;
N=4;
nx=161;
tau=linspace(-N*Tt,N*Tr,nx);
ny=61;
fd=linspace(-10,10,ny);
p=floor(tau/Tr);
1=(tau/Tr)-p;
z=[];
for m=1:ny
x=[];
f=fd(m);
for n=1:nx
t=tau(n);
pp=p(n);
r=r(n);
fl=f-pp*df;
f2=f-(2*pp-+r)*df;
f3=f-(pp+1)*df;
fA=f-(2*pp-+rr+1)*df;
if r>=0 & rr<d
if fl1==
x1=1;
else
x1=(sin(pi*f1*(Ts-1r*Tr)))./(pi*f1*(Ts-rr*Tr));
end
if rem(f2*Tr,1)==0
x2=N-abs(pp);
else
x2=(sin(pi*f2*(N-abs(pp))*Tr))./(sin(pi*f2*Tr));
end
x=[x,(Ts-rr*Tr).*x1*x2];
elseif <1 & rr>=(1-d)
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if f3==
x1=1;
else
x1=(sin(pi*f3*(Ts+(r-1)*Tr)))./(pi*f3*(Ts+(rr-1)*Tr));
end
if rem(f4*Tr,1)==0
x2=N-abs(pp+1);
else
x2=(sin(pi*f4*(N-abs(pp+1))*Tr))./(sin(pi*f4*Tr));
end
x=[x,(Ts+(rr-1)*Tr). *x1*x2];
else
x=[x,0];
end
end
z=[z;x];
end
z=(abs(z))."2;
figure(1)
mesh(tau,fd,z)
xlabel(‘'delay (pulse-width)')
ylabel('frequency (1/pulse-width))
figure(2)
contour(tau,fd,z,40)
%

sk sk sk ok o e sk sk shesfe ok sfesfeofe sk sk e ofe ok e ofe 3k sk ke ok ok ke sk ok sk skeok ok sk sk ok sk ok ke sk sk sk e sk sk ok sk sk sk sk ok ke sk e skokok ksl sk ok kel

77




shesfeshe sk sk ok sk sheoke sk ske ok sk ok sk sfe e she she ok sk sk sk ke e sfe e ske sk s sfe ofe e sk e Sk sk sfe ok sk ok s sfeok e sk sk sk ste ke ok sk sk skesfe sk skl ke ke ke ok ok sk ok skeoske ke e sk

%filename : progaS.m
% Ambiguity function of the discrete frequency modulation pulse by equation
% update : 20/aug/94
%by : Huang, Jen-chih
clear;
N=4;
T=1/N;
df=2;
d=Ts/Tr;
nx=121;
tau=linspace(-N*Tr,N*Tr,nx);
ny=61;
fd=linspace(-4,4,ny);
p=floor(tau/Tr);
r=(tau/Tr)-p;
z=[];
for m=1:ny
x=[];
f=fd(m);
for n=1:nx
t=tau(n);
pp=p(n);
rr=r(n);
fl=f-pp*df;
2=f-(2*pp-+mr)*df;
f3=f-(pp+1)*df;
fA4=f-(2*pp+rr+1)*df;
if f1*(Ts-rr*Tr)==
x1=1;
else
x1=(sin(pi*f1*(Ts-1r*Tr)))./(pi*f1*(Ts-1r*Tr));
end
if rem(f2*Tr,1)==0
x2=N-abs(pp);
else
x2=(sin(pi*f2*(N-abs(pp))*Tr))./(sin(pi*{2*Tr));
end '
y1=(Ts-r*Tr). *exp(*pi*f1*(Ts+rr*Tr)). *x 1. *exp(j*2 *pi*pp*df+t)
Fexp(G*pi*f2*(N-1+pp)*Tr). *x2;
if f3*(Ts+(r-1)*Tr==
x3=1;
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else
x3=(sin(pi*f3*(Ts+(rr-1)*Tr)))./(pi*f3*(Ts+(rr-1)*Tr));
end
if rem(f4*Tr,1)==0
x4=N-abs(pp+1);
else
x4=(sin(pi*f4*(N-abs(pp+1))*Tr))./(sin(pi*f4*Tr));
end
y2=(Ts+(rr-1)*Tr). *exp(G*pi*f3*(Ts+(rr-1)*Tr)). *x3. *exp(*2*pi* (pp+1) *df*t)
Fexp(*pi*f4*(N+pp)*Tr).*x4;
x=[x,y1+y2];
end
z=[z;x];
end
z=(abs(z))./2;
figure(1)
mesh(tau,fd,z)
xlabel('delay (pulse-width)")
ylabel('frequency (1/pulse-width)")
figure(2)
contour(tau,fd,z,40)
%
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